As noted here last week, the Journal of Theoretical Biology haspublished an explicitly pro-intelligent design article, “Using statistical methods to model the fine-tuning of molecular machines and systems.” Let’s take a closer look at the contents. The paper is math-heavy, discussing statistical models of making inferences, but it is also groundbreaking for this crucial reason: it considers and proposes intelligent design, by name, as a viable explanation for the origin of “fine-tuning” in biology. This is a major breakthrough for science, but also for freedom of speech. If the paper is any indication, appearing as it does in a prominent peer-reviewed journal, some of the suffocating constraints on ID advocacy may be coming off.
The authors are Steinar Thorvaldsen, a professor of information science at the University of Tromsø in Norway, and Ola Hössjer, a professor of mathematical statistics at Stockholm University. The paper,which is open access, begins by noting that while fine-tuning is widely discussed in physics, it needs to be considered more in the context of biology: "Fine-tuning has received much attention in physics, and it states that the fundamental constants of physics are finely tuned to precise values for a rich chemistry and life permittance. It has not yet been applied in a broad manner to molecular biology."
The authors explain the paper’s main thrust: "However, in this paper we argue that biological systems present fine-tuning at different levels, e.g. functional proteins, complex biochemical machines in living cells, and cellular networks. This paper describes molecular fine-tuning, how it can be used in biology, and how it challenges conventional Darwinian thinking…"
They explain how fine-tuning is defined. The definition is essentially equivalent to specified complexity: "We define fine-tuning as an object with two properties: it must a) be unlikely to have occurred by chance, under the relevant probability distribution (i.e. complex), and b) conform to an independent or detached specification (i.e.specific).”
Some of these discussions are quite long and extensive. First, the article contains a lucid explanation of irreducible complexity and the work of Michael Behe: "Michael Behe and others presented ideas of design in molecular biology, and published evidence of “irreducibly complex biochemical machines” in living cells. In his argument, some parts of the complex systems found in biology are exceedingly important and do affect the overall function of their mechanism. The fine-tuning can be outlined through the vital and interacting parts of living organisms. In “Darwin’s Black Box” (Behe, 1996), Behe exemplified systems, like the flagellum bacteria used to swim and the blood-clotting cascade, that he called irreducibly complex, configured as a remarkable teamwork of several (often dozen or more) interacting proteins. Is it possible on an incremental model that such a system could evolve for something that does not yet exist? Many biological systems do not appear to have a functional viable predecessor from which they could have evolved stepwise, and the occurrence in one leap by chance is extremely small. To rephrase the first man on the moon: “That’s no small steps of proteins, no giant leap for biology”….
“If a biological structure can be explained in terms of those natural laws [reproduction, mutation and natural selection] then we cannot conclude that it was designed. . . however, I have shown why many biochemical systems cannot be built up by natural selection working on mutations: no direct, gradual route exist to these irreducible complex systems, and the laws of chemistry work strongly against the undirected development of the biochemical systems that make molecules such as AMP1” (Behe, 1996, p. 203).
"Then, even if the natural laws work against the development of these ‘‘irreducible complexities”, they still exist. The strong synergy within the protein complex makes it irreducible to an incremental process. They are rather to be acknowledged as fine tuned initial conditions of the constituting protein sequences. These structures are biological examples of nano-engineering that surpass anything human engineers have created. Such systems pose a serious challenge to a Darwinian account of evolution, since irreducibly complex systems have no direct series of selectable intermediates,and in addition, as we saw in Section 4.1, each module (protein) is of low probability by itself.
This is a significant development. The article gives the arguments of intelligent design theorists a major hearing in a mainstream scientific journal. And don’t miss the purpose of the article, which is stated in its final sentence — to work towards “establish[ing] fine-tuning as a sustainable and fully testable scientific hypothesis, and ultimately a Design Science.” The authors present compelling arguments that biological fine-tuning cannot arise via unguided Darwinian mechanisms. Some explanation is needed to account for why biological systems “show the appearance of being deliberately fine-tuned.” Despite the noise that often surrounds this debate, for ID arguments to receive such a thoughtful and positive treatment in a prominent journal is itself convincing evidence that ID has intellectual merit. Claims of ID’s critics notwithstanding, design science is being taken seriously by scientists.
https://evolutionnews.org/2020/10/breakout-paper-in-journal-of-theoretical-biology-explicitly-supports-intelligent-design/